Reactivity of the Four-co-ordinate, S=1, Macrocyclic Complex of Iron(II), [Fe(C₂₂H₂₂N₄)]: 6,8,15,17-Tetramethyldibenzo[b,i][1,4,8,11]tetra-azatetradeca-2,4,7,9,12,14-hexaenatoiron(II)

By VIRGIL L. GOEDKEN* and YOUNG-AE PARK

(Department of Chemistry, University of Chicago, Chicago, Illinois 60637)

Summary The title four-co-ordinate, S=1, iron(II) complex, [Fe($C_{22}H_{22}N_4$)], has been prepared and reacts with ClO_4^- and alkyl halides to give iron(III) complexes, and with CO to give a five-co-ordinate tetra-aza Fe^{II}-CO complex.

A WIDE variety of macrocyclic ligand complexes have been synthesized and characterized in the past decade.^{1,2} The ring size, extent of conjugation, and charge on the ligand profoundly affect the properties of the metal ions, for example, the redox potentials.³ Despite thorough characterization, the reactivity of these complexes and possible use in catalytic processes has only begun to be explored. We report herein the synthesis and some unusual reactions of a four-co-ordinate Fe^{II} complex.

The reaction of the ligand, $C_{22}H_{24}N_4$, (I) (Scheme) with $[Fe(C_6H_8N_2)_3](ClO_4)_2$, $(C_6H_8N_2 = o$ -phenylenediamine), in MeCN under N_2 with NEt₃ yields a high-spin, five-co-ordinate Fe^{III} complex, $[Fe(C_{22}H_{23}N_4)Cl]$, m/e 433, μ_{eff} . 5.95 B.M.[†] The observation that ClO_4^- was being reduced to Cl⁻ suggested that a very reactive intermediate, [Fe-

† All complexes reported gave satisfactory elemental analysis.

 $(C_{22}H_{22}N_4)$] might have been produced. The reaction was then carried out using $[Fe(C_4H_8N_2)_2(NCS)_2]$ (Scheme) which

SCHEME. Reagents: i, pyridine; ii, O_3 ; iii, Et_3N , MeCN; iv, CO, toluene; v, ClO_4^- , $CHCl_3$, or CCl_4 ; vi, RX.

gave good yields of the four-co-ordinate, S=1, [Fe($C_{22}H_{22}N_4$]: m/e 398, μ_{eff} . 3.69 B.M., vis.-u.v. spectrum: 16,310(sh, ϵ 1795), 17,480(sh, 3029), 18,620(4689), 22,030(4037), $26,320(32,673), 27,930(30,780), and 32,450(26,840) \text{ cm}^{-1}$. It must be pointed out that this four-co-ordinate complex is formed in the presence of the donor ligand, NCS- and the moderately good donor solvent, MeCN. A few other fourco-ordinate Fe^{II} complexes with S=1 have been characterized, including Fe^{Π} phthalocyanines,⁴ porphyrins,⁵ and another dianionic macrocyclic ligand complex.²

The four-co-ordinate $[Fe(C_{22}H_{22}N_4)]$ complex readily co-ordinates CO in toluene solution giving an unusual five co-ordinate Fe-CO complex, [Fe($C_{22}H_{22}N_4$)CO], ν_{co} 1921 cm⁻¹. This five-co-ordinate Fe–CO complex readily adds a sixth σ -donor ligand such as pyridine; however, the σ -donor is observed crystallographically to have an abnormally long bond to the iron.6

The reactivity towards a number of other reagents is illustrated in the Scheme. The complex is extremely sensitive to O_2 , both in solution and in the solid state and forms an oxo-bridged dimer, $[Fe(C_{22}H_{22}N_4)]_2O; v_{Fe-O-Fe}$ 890 cm⁻¹, µeff 1.97 B.M. Of more importance, it reacts immediately with CHCl₃ or CCl₄ on mixing, abstracting a Cl atom to form the high-spin, five-co-ordinate complex, [Fe(C₂₂H₂₂N₄)Cl]. An important extension of this reactivity pattern is the reaction with alkyl halides such as MeI, EtI, or PhCH₂Br to form two types of complexes, a low spin organo-FeIII complex and the five-co-ordinate, S = 5/2, [Fe(C₂₂H₂₂N₄)X] complexes. The organo-Fe^{III}

complexes are identical in all respects to those reported earlier by a different route.⁷ It is proposed that the reaction with RX proceeds in a two-step process similar to that determined for $Co(CN)_5^{3-}$ in which $Co(CN)_5^{3-}$ first abstracts an X atom forming $Co(CN)_5 X^{3-}$ and an R radical which then reacts with more substrate forming $Co(CN)_5 R^{3-}$ (ref. 8). We have been unable to observe any formation of [Fe- $(C_{22}H_{22}N_4)H$] with H_2 or other potential sources of H atoms as observed for Co(CN)₅³⁻.

A number of factors contribute to the high reactivity of our four-co-ordinate complex. These include: (i) the twonegative charges on the ligand greatly stabilize the Fe^{III} state, (ii) the completely conjugated 14-membered ring leads to abnormally short in-plane Fe-N distances and an abnormally high tetragonal ligand field, and (iii) the complex is co-ordinatively unsaturated. The first two aspects mentioned are not as significant for the phthalocyanine and porphyrin ligands. The negative charges on these ligands. are delocalized over a much more extensive π -system and the 16-membered inner rings do not appreciably squeeze the metal ion. A reactivity similar to that reported here may be expected for the four-co-ordinate FeII complex of ref. 2.

The support of this research by a U.S. National Institutes of Health grant is gratefully acknowledged.

(Received, 30th December 1974; Com. 1575.).

¹ L. F. Lindoy and D. H. Busch, Prep. Inorg. React., 1971, 6, I, and references cited therein.

L. F. Lindoy and D. R. Busch, *Frep. Inorg. Reac.*, 1917, **0**, 1, and Feierences cited therein.
T. J. Truex and R. H. Holm, J. Amer. Chem. Soc., 1972, **94**, 4529.
F. V. Lovecchio, E. S. Gore, and D. H. Busch, J. Amer. Chem. Soc., 1974, **96**, 3109; N. Takvoryan, K. Farmery, V. Katovic, F. V. Lovecchio, E. S. Gore, L. B. Anderson, and D. H. Busch, *ibid.*, 731.
B. W. Dale, R. J. P. Williams, C. E. Johnson, and T. L. Thorp, J. Chem. Phys., 1968, **49**, 3441; C. G. Barraclough, R. L. Martin, S. Mitra, and R. C. Sherwood, *ibid.*, 1970, **53**, 1643.
J. Collman and C. Reed I. Amer. Chem. Soc. 1973 **95**, 2048.

⁶ J. P. Collman and C. Reed, *J. Amer. Chem. Soc.*, 1973, 95, 2048. ⁶ V. L. Goedken, J. Molin-Case, and Y-A. Whang, *J.C.S. Chem. Comm.*, 1973, 337.

⁷ V. L. Goedken, S.-M. Peng, and Y-A. Park, J. Amer. Chem. Soc., 1974, 96, 284.

⁸ J. Halpern and J. P. Maher, J. Amer. Chem. Soc., 1964, 86, 2311; 1965, 87, 5361; P. B. Chock and J. Halpern, ibid., 1969, 91, 582.